
A NLP engine from the lab to the iPhone

Sébastien Paumier
Université Paris-Est,

LIGM, France
paumier@univ-mlv.fr

François Liger,
Gilles Vollant,

Anastasia Yannacopoulou
Ergonotics, France

francois@ergonotics.com
gilles@ergonotics.com

anastasia@ergonotics.com

Sylvain Surcin
Kwaga, Paris, France

surcin@kwaga.com

Abstract

This paper describes a successful collabo-
ration between the academic world in NLP
and industry in order to develop real-life
applications that benefit from both theoret-
ical research and engineering skills. This
collaboration led to the development of
a real-time text analyzer for a PDA note
taking application and a server-based mail
parsing application. The Open Source phi-
losophy suited this partnership perfectly
and did not conflict with trade secret.

1 Introduction

In some NLP applications, a gap exists between
what is known to be feasible according to the aca-
demic state of the art and the actual use of those
technologies in industrial products. A major cause
is that researchers often develop prototypes that
are typically proofs of concept, but not reliable and
reusable components ready to be integrated in in-
dustrial workflows. As a consequence, the only
available options for industry developers are too
often either to recode engines from scratch, which
requires highly qualified manpower, or to accept
the limitations of available tools.

However, there is an evolution in relations be-
tween industrial and academic worlds, for it had
become clear that there are mutual advantages to
this kind of partnership, as shown in (Etzkowitz et
al., 1998), (Okubo and Sjoberg, 2000) and (Newell
et al., 2006). In this paper, we describe such a
fruitful collaboration, with significant benefits for
both. We will first analyse the preconditions that
made this possible. Special attention will be paid
to the advantages of the Open Source model, and
we will show that it has not been incompatible
with trade secret, as one may fear. Then, we will
describe the way this collaboration actually took
place and how all partners influenced the NLP en-
gine development roadmap.

Finally we will present experimental results that
are so impressive that they open new perspectives
that academics would not have dreamt of, demon-
strating that optimization is not relevant to engi-
neering only, but that it can lead to progress in sci-
ence too.

2 Preconditions

First of all, let us introduce the background of this
work. The idea was to produce two applications:
a commercial note taking application capable of
analyzing user input on the fly in order to perform
tasks such as automatically inserting meetings into
his/her agenda, and another application perform-
ing a semantic analysis of user’s mail to pinpoint
and synthesize relevant information. To achieve
these goals, one of the steps was to parse the in-
put and to do so, the developers had to choose
an existing NLP toolbox. Based on the previ-
ous experience of one of them, they chose Uni-
tex, a corpus-processing tool developed at Uni-
versity Paris-Est Marne-la-Vallée1. This engine is
designed for applying electronic dictionaries and
grammars to texts. Its major use is to perform ad-
vanced linguistic queries, more complicated than
regular expressions over characters. As a conse-
quence, it is very well suited to information extrac-
tion tasks such as those required by both projects.
However, some conditions had to be met before
this tool could be used in a production environ-
ment: availability, reliability and efficiency.

The first condition (availability) was obviously
met thanks to the engine’s LGPL license. The sec-
ond one (reliability) stemmed from the wide use
of Unitex in many teaching and scientific projects.
Since its inception in 2001, this system has been
extensively tested. The last point (efficiency) was
by far the most critical one, because of specific
hardware constraints. Unitex was designed for

1http://igm.univ-mlv.fr/˜unitex



dealing with large data on computers with large
memory and no time constraints, not for parsing
very small texts on handheld machines such as
the iPhone, or parallel processing of very large
amounts of small corpora under time constraints.
Thus, it was necessary to investigate the code in
order to determine if there was a sufficient margin
for optimization that could reduce Unitex’s run-
time and memory consumption below the critical
threshold for the projects. Once again, due to its
Open Source license, this code review was possi-
ble and the conclusion of the feasibility test was
positive.

3 Collaboration, Open Source and trade
secret

As explained by Raymond (2001), Open Source
has been proven to be able to produce reliable soft-
ware, despite its uncentralized nature at the oppo-
site of classical software engineering techniques
like those discussed in (Brooks, 1995). This new
way of producing software has been studied, in
particular to analyse why this uncommon model
seems to work (Johnson, 2006), (Lee et al., 2003).

As argued in (Pedersen, 2008) and (Paumier,
2009), Open Source should be the natural way of
producing academic software. One of the main
reasons is that enriching the science toolbox and
software engineering are very distinct activities.
In order to benefit from academic research, it is
often easier for an industrial developer to adapt
an available (and often ill-fitted) existing piece of
software than to try to redevelop the whole thing
from an obfuscated paper published in a scientific
journal. Open Source can guarantee access to aca-
demic code, and it does not necessary imply that
the industrial product should be Open Source it-
self, thanks to licenses like the LGPL2. So, if re-
searchers can have their work used in real-life ap-
plications and industry can exploit the state of the
art, both benefit from Open Source.

However, a thorny problem remains: a license
such as the LGPL allows anyone to use a piece
of software as a black box without any restriction,
but modifications made to the code itself must be
released as Open Source. This may raise practi-
cal problems if the open source engine is not per-
fect, which appeared to be the case with Unitex.
A major optimization opportunity was to save on
I/O operations by using persistent dictionaries and

2http://www.gnu.org/licenses/lgpl.html

grammars, kept in memory for as long as needed.
Such a modification was not a simple black box
use case, since it had of course to be performed
on the core Unitex code. The problem was that
the technology used to manage such persistent ob-
jects had to be protected as an important part of
the company’s savoir-faire, which seemed contra-
dictory with the LGPL.

This apparent deadlock was in fact quite eas-
ily solved. Unitex was provided with a callback
system that calls the private library if present, and
Unitex normal routines if not. Thus, the trade se-
cret in the library remain protected without vio-
lating the LGPL. Of course, it required the call-
back system to be inserted into Unitex, but as it is
Open Source, anyone could do so. The interesting
point here is that it could have been done legally
without the Unitex authors’ consent, leading to a
derivation of the original system. However, it was
far more interesting to modify the main trunk of
the system since a forked branch would not easily
benefit from future development. So was done by
requiring and obtaining access to the Unitex SVN
server, thus initiating a real collaboration and not
simply a one-way exploitation of the system.

4 Concrete cooperation

Once full SVN access obtained by the companies,
the first step was to commit all the bug fixes pro-
duced during the code review. This was an oppor-
tunity for Unitex’s main author to test the trust-
fulness of the new developers, as there is noth-
ing worse than to give full powers to someone that
messes up your own work. Mutual trust was cer-
tainly one of the most important success factors.

The next step was a discussion about the
roadmap, since current research objectives were
quite divergent from the industrial ones. We had
to define priorities because some core modifica-
tions required for I/O optimizations had to be care-
fully planned to avoid conflicts at the lowest lev-
els of the engine. Some parts of the code had to
be marked as out of bounds until some ongoing
research work was done, and some others were
flagged as deprecated in order to avoid unneces-
sary code review.

Then the optimization started. Memory leaks
were fixed and wasteful allocations, such as un-
necessary local arrays in recursive functions, were
removed. Performance optimizations came from
several areas. First, the Unitex I/O library was se-



riously boosted by a wise use of buffering strate-
gies. Then some objects were made persistent,
which saved many operations. This part required
discussions between partners in order to determine
which data could be safely made persistent. It ap-
peared to be the case for electronic dictionaries,
but grammars had to be manipulated with caution,
since some are modified at runtime depending on
the text they are applied to. Without close coop-
eration, it would have been difficult to implement
all those optimizations, since a deep knowledge of
the code was necessary to foresee potential traps.

Another major improvement was obtained by
gathering all Unitex code into a shared library, in
order to minimize system time previously spent
on launching a process for each Unitex program
call. As a side effect, a big effort had to be made
to clean up the code and free dangling objects,
fix name conflicts and remove global variables,
thus producing thread-safe code, which is always
a pleasant plus when evaluating the quality of a
piece of software.

5 Improving practices

Reliability is a priceless quality, but it is not ac-
quired forever since any modification can compro-
mise the safety of the system at any time. This is
the reason why industrial development workflows
use test sets in order to ensure that modifications
do not lead to regression. However, this seducing
and securing process is not worth the effort if the
project is either small or controled by a very few
developers, as often in research software develop-
ment. So, even computer scientists that teach the
arts of programming and software engineering sel-
domly practice themselves those wise rules, and it
is thus a great opportunity for industrial develop-
ers to influence positively the academic world.

In Unitex, it took the form of a log system capa-
ble of recording any operation in order to replay it
as needed. Test sets were prepared this way. Now,
any modification can be tested along the whole test
set to see whether it seems safe or not. And if a
modification or a use case reveals a new bug that
was not detected by the test set, we add a new test
case.

This change obviously improves the software
quality, but as a major side effect, it helps to ed-
ucate users. A problem for developers of all kinds
are useless ”Doesn’t work!” bug reports closer to
spam than to usable feedback. With such a logger

system, users are offered the possibility to build
themselves test data that they can submit with use-
ful comments like ”it worked with version X but
not with version Y”. So, the introduction of such a
continuous integration tool had helped to improve
not only the product, but also its users’ responsi-
bility, which is priceless.

6 Evaluation

6.1 Note taking application

This application uses two grammars, the second
one being applied only when the first one does not
match anything:

• firstPass : 435 subgraphs, 6 336 states,
12 426 transitions, 291 516 bytes

• secondPass : 367 subgraphs, 5 689 states,
11 196 transitions, 256 854 bytes

All results have been obtained on a Mac mini
core 2 duo 1.6 GHz under Snow Leopard, with
GCC 4.2. Times are given in milliseconds. Re-
vision numbers are those on Unitex SVN server
(with public anonymous read-only access3).

To begin with, here are 3 results obtained on the
sentencego to the cinema tonight, alarm 7pm with
simple optimizations, before the step when objects
were made persistent:

• Revision 837 (the first 2.1 beta version, with
no optimization): 811 ms

• Revision 911 (gcc’s -O2 option): 618 ms

• Revision 913 (optimization of hash tables):
176 ms

Table 1 shows the evolution of performance
on the test corpus (1363 sentences, 222 of them
needing the 2 graphs, about 6.5 words per sen-
tence). Given times correspond respectively to the
fastest, slowest and average processing of a sen-
tence. The revision 1237++ row shows results
obtained with optimizations made on the external
private libraries. As one can see, the best results
shown in the last row are far better than those ob-
tained with version 2.0 of Unitex (more than 800
ms on a simple sentence).

3https://svnigm.univ-mlv.fr/svn/unitex



0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

Un
ite
x 2

.0

co
mp

ile
r o

pti
mi
za
tio
n

ha
sh
 ta
ble

 op
tim

iza
tio
n

Un
ite
x 2

.1

vir
tua

l fi
le 
sy
ste

m 
op

tim
iza

tio
n

tre
e p

ars
ing

 op
tim

iza
tio
n

pe
rsi
ste

nc
e o

pti
mi
za
tio
n

loc
ate

 op
tim

iza
tio
n

811.0

618.0

176.0 176.0

72.0

60.0
32.0

15.0

Figure 1: Average time spent processing a sentence in ms

Version Min. Max. Aver.
Revision 1123,
no virtual file

71 1101 176

Revision 1123,
only virtual files

51 407 72

Revision 1123,
persistant files

25 355 44

Revision 1237,
virtual files

49 191 60

Revision 1237,
persistant files

23 151 32

Revision
1237++, per-
sistant files

8 127 15

Table 1: Performance evolution on the PDA note
taking application

6.2 Mail parsing application

This application uses 20 grammars for each lan-
guage it works on. In average, each grammar has
183 states and 20 transitions.

Tests have been made on a MacBook Unibody

Intel Core 2 Duo 2.4 GHz with 4 Gb RAM. The
test corpus is made of 143 mails of about 4 Kb
per mail. As the application excludes some sec-
tions from the mails like quotations, it process
only about 72 words per mail. Results are given
in mails processed per minute and in millisecond
per mail.

The first two rows of Table 2 show results ob-
tained with regular versions of Unitex. The later
ones shows results obtained with Unitex used as
a dynamic library called from a JNI (Java Native
Interface). The last row shows results obtained
with optimizations made on the external private li-
braries.

7 Feedback to Open Source

Academic Open Source can provide industrials
with the very handy practicality of available soft-
ware solutions that can be tuned or upgraded to the
level of industrially usable software components
with less effort than developing them from scratch.
And we have already seen that in return, the aca-
demics benefit from the industrialization process
through the improvement of the quality, robustness



Version Mails/mn ms/mail
Unitex 2.0 5 11962
Unitex 2.1β, rev. 1237 23 2564

Library, rev. 1030 430 139
Library, rev. 1123 470 127
Library, rev. 1125 472 127
Library, rev. 1129 553 108
Library, rev. 1237 566 106

Library, rev. 1237++ 711 84

Table 2: Performance evolution on the mail pars-
ing application

and efficiency of their code.
Further cooperation is possible, and the industry

may also produce Open Source software. This is
the case of our cooperation as one of the industrial
partners will provide very soon a Java encapsula-
tion of the Unitex library, and a UIMA4 annotator,
together with a type system, built on top of it.

8 Conclusion

We have described a collaboration between the in-
dustrial and academic worlds built over an Open
Source software project. The industrials have ben-
efited from the academic knowledge about natural
language processing with finite-state technologies.
The academics have not only seen their software
hugely improved (54 times faster for the PDA note
taking application, 142 times faster for the mail
parsing one), but they also have inherited good
practices, a UIMA wrapper and tools that will help
educate users. Thus, there are mutual benefits to
such a collaboration.

However, there may be another, subtler, long-
term academic benefit, since those impressive op-
timizations are a real performance scale change.
As a consequence, new experiments and new pro-
cessing workflows become possible. For example,
guessing the language of very small texts can be
hazardous: a new method for this could be to use
resources for different languages in parallel and to
determine the language in function of the results.
Thus, a major speed gain can actually open new
perspectives for researchers.

Open Source has been proven to be able to pro-
duce reliable software. Moreover, it provides an
interesting frame for cooperation with the indus-
try, through the use of scientific software. Open

4http://incubator.apache.org/uima

Source does not necessarily conflict with trade se-
cret and promotes idea exchanges. It should be
always considered as a valuable option when start-
ing a software project.

References

Frederick P. Brooks, Jr. 1995.The mythical man-
month (anniversary ed.). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Henry Etzkowitz, Andrew Webster, and Peter Healey,
editors. 1998.Capitalizing knowledge: New Inter-
sections of Industry and Academia. State university
of New York Press, Albany.

Justin P. Johnson. 2006. Collaboration, peer review
and open source software.Information Economics
and Policy, 18(4):477 – 497.

Samuel Lee, Nina Moisa, and Marco Weiß. 2003.
Open source as a signalling device - an economic
analysis. Working Paper Series: Finance and Ac-
counting 102, Department of Finance, Goethe Uni-
versity Frankfurt am Main, March.

Alan F. Newell, Anna Dickinson, Mick J. Smith, and
Peter Gregor. 2006. Designing a portal for older
users: A case study of an industrial/academic col-
laboration. ACM Trans. Comput.-Hum. Interact.,
13(3):347–375.

Yoshiko Okubo and Cecilia Sjoberg. 2000. The chang-
ing pattern of industrial scientific research collabo-
ration in sweden.Research Policy, 29(1):81 – 98.

Sébastien Paumier. 2009. Why academic software
should be Open Source.INFOtheca: Journal of in-
formatics and librarianship, X(1-2):51–54, June.

Ted Pedersen. 2008. Empiricism is not a matter of
faith. Comput. Linguist., 34(3):465–470.

Eric S. Raymond. 2001. The Cathedral and the
Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. O’Reilly & Associates,
Inc., Sebastopol, CA, USA. Foreword By-Young,
Bob.

Appendix A - About the companies

Ergonotics is a software company located in north-
ern France. The company was started by François
Liger, Anastasia Yannacopoulou and Gilles Vol-
lant with a simple goal: build and market intel-
ligent software that adapts to its user rather than
the usual other way around. The note taking ap-
plication will be available on both MacBook and
iPhone.



Figure 2: Screenshot of Kwaga’s application

Kwaga (http://www.kwaga.com ) is a
company that provides a semantic-based solution
for email users to help them focus on essential
emails and information, and follow-through with
key decisions in a few clicks. This solution comes
with a plug-in for Firefox working with the user’s
Gmail account. The plug-in adds a lightweight
display layer over the native Gmail interface (see
Figure 2). It displays the information extracted
and inferred by the Kwaga server in such a way
that it is easier for the user to keep track of rele-
vant information, meeting and actions.

Kwaga’s technology relies on a server-side
processing chain combining, through the UIMA
framework, a linguistic analysis module based on
Unitex and local grammars for French and En-
glish (note: Spanish and Chinese being the next
steps), and various inference modules using Arti-
ficial Intelligence techniques to combine linguistic
and structured information to extract the relevant
information from the user’s emails.

Kwaga benefits from collaborations with indus-
trial partner Ergonotics and universities such as
Université Paris-Est and provide use cases adapted
to the context of emails processing (several hun-
dred thousands mails processed each day), encap-
sulate Unitex into UIMA and develop parallel al-
gorithms for massive parallel linguistic process-
ing.


